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The Dendritic Effect in Molecular Recognition: Scheme 1
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Figure 1. Number of equiv ofn-BusNtTHSQ,~ added per branch.
Titration of 1-Fc (1-Fc= [Fe(GHs)(CsH4«CONHCH,CH,OPh)], 3-Fc,
9-Fc, and 18-Fc (see Chart 1) byBu/,N"HSO,~ monitored by CV.
Concentrations in FcDs were 0.001 M, @b, n-BusN*BF,~ (0.1 M),

20 °C, reference electrode: SCE, auxiliary and working electrodes:
Pt, scan rate: 100 mg™.

Chart 1

(Table 2). The equivalence point of the titration always
corresponds to 1 equiv anion per branch.
AE° (V) = 0.059 logEK(+)] at 25°C, c = [added anion] (2)

Interestingly, in all caseg\E° considerably increases as the
number of dendritic branches increases in the series3—
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Table 2. Apparent Association Constarit§+) Determined in
CH.CI, by CV for the FcD Series from the Shift of the CV Wave
Using Eqs 1 and 2

1-Fc 9-Fc 18-Fc
HPOy~ 9390 216906 b
HSO,~ 544 8530 61400
Cl- c 917 2120
NOs~ c c 403

aK(+) determined for the 9-Fc dendrimer from the combination of
K(0) determined by'H NMR in CD.Cl, and the K(+)/K(0) ratio
determined by CV in CkCl, using eq 1° For 18-Fc, theK(+)/K(0)
ratio was found to be 219 000. The uncertaintieskowalues are
estimated to 10% Since theAE® values are much smaller than the
uncertainties (Table 1), calculation of the smidlivalues would be
meaningless.

9 — 18-amido ferrocene (Table 1 and Figure 1), which shows
the dendritic effect. The order oAE° values for either
dendrimer is HPO,~ > HSO;~ > CI~ > NO;3~. Finally, the
waves are still electrochemically reversible during and after the
titrations indicating that the binding process is fast and reversible
on the electrochemical time scale.

Monitoring the titration of the ferrocene dendrimer Byt
NMR (dnn) is not as useful as monitoring by cyclic voltam-
metry, because the ferrocene dendrimers are not charged. Their
interaction with anions in the absence of electrostatic contribu-
tion is considerably weaker than that of ferricinium dendrimers.
Thus, the equivalence point is reached for an amount of equiv
anion which considerably differs from unity and varies with
the nature of the anion and the dendritic generatio@nly in
the case of 9-Fc andJRO,~ is the equivalence point reached
with 1 equiv of HPO,~ per branch §nu free = 6.82 ppm;

ONH bound= 6.65 ppm, CRCl,). This gives access t§(0) and
K(+) (Table 2).

The starting point for the rationalization of all the data is the
synergy between the electrostatic interaction (involving the
ferricinium cation and the anion) and the H-bonding of the
amide H atom with the anioch.The NMR data show that, with
the H-bonding alone (18-electron ferrocene state), the interaction
is usually weak. However, even when the two conditions for
the synergy are fullfiled, thAE® value obtained is small when
the ferrocene compounds is monometallic (1-Fc) or trimetallic
(3-Fc). Thus, the shape selectivity designed in the dendrimer
is also an essential factor and delineates the dendritic effect.
The dendritic effect is clear from Table 1 and Figure 1. It can
be defined as the ability for a dendrimer to achieve a better
sensing and recognition of anions by cyclic voltammetry as the
dendritic generation increases (i.e739 — 18). The dendritic
effect is maximum for the generation (18-Fc) preceding steric
surface saturation (36-Fc). Since the amide H atom is located
on the branch behind the ferrocene block, the anion has to
penetrate the surface cavity defined by these large ferrocene
termini. As the dendritic generation becomes higher, the smaller
the surface hole for the penetration of the anion is, since the
ferrocene termini of the different dendritic branches become
closer to one another (as shown by molecular models). Since
the anions are small, it is not surprising that the greatest effect
and selectivity is found for the highest soluble generation
because it forms the best open cavities. In comparison,
endoreceptors also favor anion inclusion with open cavities
where size compatibility plays a rof€.
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